利用質因數分解的結果求出所有因數之和,
將所有因數之和扣除掉自己本身,再比較大小即是答案。
P.S. 利用質因數分解的結果求出所有因數之和是數學的公式,
是每一個質因數從自己的0次方加到自己在質因數分解中的最高次方,
接著在把求出來所有的和相乘起來即可得解。
Ex. 12: 2^2 * 3^1
12所有因數之和:(2^0+2^1+2^2)*(3^0+3^1) = (1+2+4) * (1+3) = 28
驗證:12之因數:1,2,3,4,6,12
12所有因數之和:1+2+3+4+6+12=28
[C](0.016)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include<stdio.h> | |
#include<math.h> | |
#define ERROR 0.0000001 | |
int main() | |
{ | |
int prime[60005] = {1,1,0}; | |
int i, j; | |
for( i = 2 ; i <= 60000 ; i++ ) | |
if( !prime[i] ) | |
for( j = i+i ; j <= 60000 ; j += i ) | |
prime[j] = 1; | |
int N; | |
printf( "PERFECTION OUTPUT\n" ); | |
while( scanf( "%d", &N ) != EOF && N != 0 ) | |
{ | |
int divisor[60005] = {0}; | |
int temp = N; | |
int sqrt_N = (int)( sqrt((double)N) + ERROR ); | |
for( i = 2 ; i <= sqrt_N ; i++ ) | |
if( !prime[i] ) | |
while( temp % i == 0 ) | |
{ | |
temp /= i; | |
divisor[i]++; | |
} | |
int product = 1; | |
int powsum, singlepow; | |
for( i = 2 ; i <= sqrt_N ; i++ ) | |
if( divisor[i] ) | |
{ | |
powsum = 1; | |
singlepow = 1; | |
for( j = 1 ; j <= divisor[i] ; j++ ) | |
{ | |
singlepow *= i; | |
powsum += singlepow; | |
} | |
product *= powsum; | |
} | |
if( temp != 1 ) | |
product *= temp+1; | |
product -= N; | |
printf( "%5d ", N ); | |
if( product == N ) | |
printf( "PERFECT\n" ); | |
else if( product > N ) | |
printf( "ABUNDANT\n" ); | |
else | |
printf( "DEFICIENT\n" ); | |
} | |
printf( "END OF OUTPUT\n" ); | |
return 0; | |
} |
0 意見:
張貼留言